Abstract
This paper presents a soft-switching dual-flyback dc-dc converter with improved efficiency and reduced output ripple current. Zero-voltage-switching (ZVS) technique and a dual-flyback module for reducing the number of snubber current paths are adopted to improve efficiency. For the ZVS technique, a self-driven synchronous rectifier (SR) is used instead of an output diode. By turning the self-driven SR off after a short delay, a main switch is turned on under the ZVS condition. For reducing the number of snubber current paths, a dual-flyback module and a snubber diode are used. When the main switch is turned off, leakage inductance energy is absorbed by a snubber diode into an input source and a primary dc-bus capacitor. Then, this energy is reprocessed by the dual-flyback dc-dc module to secondary side. Hence, there is only one snubber current path. In addition, the proposed converter features a reduced output ripple current because of the continuous current. Consequently, the proposed converter can achieve high efficiency and reduced output ripple current. To verify the performance of the proposed converter, operating principles, steady-state analyses, and experimental results from a 340 to 24-V, 100-W prototype are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.