Abstract

We address the problem of learning large complex ranking functions. Most IR applications use evaluation metrics that depend only upon the ranks of documents. However, most ranking functions generate document scores, which are sorted to produce a ranking. Hence IR metrics are innately non-smooth with respect to the scores, due to the sort. Unfortunately, many machine learning algorithms require the gradient of a training objective in order to perform the optimization of the model parameters,and because IR metrics are non-smooth,we need to find a smooth proxy objective that can be used for training. We present a new family of training objectives that are derived from the rank distributions of documents, induced by smoothed scores. We call this approach SoftRank. We focus on a smoothed approximation to Normalized Discounted Cumulative Gain (NDCG), called SoftNDCG and we compare it with three other training objectives in the recent literature. We present two main results. First, SoftRank yields a very good way of optimizing NDCG. Second, we show that it is possible to achieve state of the art test set NDCG results by optimizing a soft NDCG objective on the training set with a different discount function

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.