Abstract
AbstractModelling multivariate time series of counts in a parsimonious way is a popular topic. In this paper, we consider an integer‐valued network autoregressive model with a non‐random neighbourhood structure, which uses negative binomial distribution as the conditional marginal distribution and the softplus function as the link function. The new model generalizes existing ones in the literature and has a great flexibility in modelling. Stationary conditions in cases of fixed dimension and increasing dimension are given. Parameters are estimated by maximizing the quasi‐likelihood function, and related asymptotic properties of the estimators are established. A simulation study is conducted to assess performances of the estimators, and a real data example is analysed to show superior performances of the proposed model compared with existing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.