Abstract
Neural networks have a great place in approximating nonlinear functions, especially those Lebesgue integrable functions that are approximated by FNNs with one hidden layer and sigmoidal functions. Various operators of neural networks have been defined and achieved to get good rates of approximation depending on the modulus of smoothness. Here we define a new neural network operator with a generalized sigmoidal function (SoftMax) to improve the rate of approximation of a Lebesgue integrable function Lp , with p < 1, to be estimated using modulus of smoothness of order k. The importance of choosing SoftMax function as an activation function is its flexible properties and various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.