Abstract
PbZrO3-based antiferroelectric (AFE) materials have received growing attention for their attractive energy storage performance. However, a major drawback of PZ is its high critical electric field (Ecr) which makes it difficult to switch the antiparallel dipoles therein so as to be useful. Therefore, softening of AFE order in PbZrO3 is thought to be a promising approach for its practical applications. In this work, a new binary AFE solid solution of (1-x)PbZrO3-xPb(Mg1/2Mo1/2)O3 (PZ-PMM), with x = 0.00–0.10, was successfully synthesized in form of ceramics via the solid-state reaction method. The effect of chemical modification by introducing Pb(Mg1/2Mo1/2)O3 on the crystal structure, phase transition behavior and electrical properties of the PbZrO3 ceramics are investigated systemically. It is found that a perovskite phase with orthorhombic Pbam symmetry is preserved at room temperature for all the compositions studied, and a broadened ferroelectric intermediate phase exists between the paraelectric (PE) and the antiferroelectric phases of the PZ-PMM solid solution. At 160 °C, typical double hysteresis loop can be displayed for all the compositions. Most importantly, the maximum electric field-induced polarization is significantly increased, whereas the critical field is decreased with increasing PMM content, suggesting a remarkable softening effect of the antiferroelectric order in PZ due to some degree of dipole frustration. This work could bring about the development of a new series of PZ-based solid solutions for energy storage applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.