Abstract

As an innovative sparse kernel modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In the support vector regression, Vapnik developed the -insensitive loss function as a trade-off between the robust loss function of Huber and one that enables sparsity within the support vectors. The use of support vector kernel expansion provides us a potential avenue to represent nonlinear dynamical systems and underpin advanced analysis. However, in the standard quadratic programming support vector regression (QP-SVR), its implementation is more computationally expensive and enough model sparsity can not be guaranteed. In an attempt to surmount these drawbacks, this article focus on the application of soft-constrained linear programming support vector regression (LP-SVR) in nonlinear black-box systems identification, and the simulation results demonstrates that the LP-SVR is superior to QP-SVR in model sparsity and computational efficiency

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.