Abstract

We have used synchrotron-based soft X-ray core-level photoemission and adsorption spectroscopies to study the reaction of aqueous sodium chromate solutions with freshly fractured pyrite surfaces. Pyrite surfaces were reacted with 50 μM sodium chromate solution at pH 7 for reaction times between 1 min and 37 hr. Additional experiments were performed at pH 2 and pH 4 with 50 μM sodium chromate solutions and at pH 7 with 5 mM solutions. At chromate concentrations of 50 μM, all chromium present on the pyrite surface was in the form of Cr(III), while at 5 mM, both Cr(III) and Cr(VI) were present at the pyrite surface. Minor quantities of oxidized sulfur species (sulfate, sulfite, and zero-valent sulfur) were identified as reaction products on the pyrite surface. The amount of oxidized sulfur species observed on the surface was greater when pyrite was reacted with 5 mM Cr(VI) solutions because the rate of chromium deposition exceeded the rate of dissolution of pyrite oxidation products, effectively trapping Cr(VI) and oxidized sulfur species in an overlayer of iron(III)-containing Cr(III)-hydroxide. This work shows that pyrite, an extremely cheap and readily available waste material, may be suitable for the removal of hexavalent chromium from acidic to circumneutral waste streams. The reduced chromium ultimately forms a coating on the pyrite surface, which passivates the pyrite surface towards further oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.