Abstract
The electronic states of Ba24Ge100 are studied by soft x-ray photoelectron spectroscopy (XPS) at a high-energy photon factory. A large reduction in the density of states (DOS) at the Fermi level is clearly shown before and after the electronic phase transition at 200 K. The changes in the spectrum widths and the fine structures of the core-level Ba 4d spectra give a very reasonable indication of the Ba-atom rattlings in the clathrate polyhedra. On-resonance experiments using the excitation from Ba 3d to 4f levels display that the wave functions of Ba 5d and 6s orbitals give only a small contribution to make a Fermi surface through the hybridization with the Ge20 cluster orbitals. Importantly, reliable values of the DOS at the Fermi level NEF are successfully deduced, using two data sets of DOS obtained from high-resolution XPS and the total magnetic susceptibilities by a superconducting quantum interference device, to be 0.149 and 0.0427 states eV(-1) (Ge atom)(-1) for a high-temperature and for a low-temperature phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.