Abstract

Large-area nanopatterning technology has demonstrated high potential which can signifi‐ cantly enhance the performance of many devices and products, such as LEDs, solar cells, hard disk drives, laser diodes, display, etc [1]. For example, nano-patterned sapphire substrates (NPSS) and photonic crystals (PhC) have been considered as the most effective approaches to improve the light output efficiency (internal quantum efficiency and external quantum efficiency) of LEDs and beam shaping [2,3]. The solar cells with sub-micro anti-reflective coating exhibited higher photocurrent and higher power conversion efficiency compared to those without nanostructures [4]. Moreover, the ability to produce large-area microand nanostructures on non-planar surfaces is of importance for many applications such as optics, optoelectronics, nanophotonics, imaging technology, NEMS, and microfluidics [5]. However, creating large-area nanostructures on curved or non-planar surfaces are extremely difficult using existing patterning approaches. Furthermore, a variety of existing nanopatterning technologies such as electron beam lithography (ELB), optical lithography, interference lithography (IL), etc., cannot cope with all the practical demands of industrial applications with respect to high resolution, high throughput, low cost, large area, and patterning on nonflat and curved surface. Therefore, new high volume nanomanufacturing technology strongly needs to be exploited and developed so as to meet the tremendous requires of rapid growing markets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.