Abstract

Abstract Mesoporous materials with crystalline ZrO2, Y2O3, and CeO2 frameworks were one-pot synthesized from a clear solution of ethanol containing metal nitrates, organic surfactant (i.e., Pluronic® F-127), formaldehyde, and phloroglucinol. The solution was converted to a mesostructured nanocomposite of metal nitrate/phenol resin/surfactant via a solvent evaporation-induced self-assembly process. The obtained nanocomposite was calcined at 800 °C in a N2 atmosphere. X-ray powder diffraction and electron microscopic investigation revealed that the calcination caused amorphous-to-crystalline transformations in the metal oxide frameworks, while sintering to bulk metal oxides was prevented by the in-situ generated carbon component. Mesoporous metal oxides with a crystalline framework were obtained when the carbon skeleton was burnt off. The mesoporous metal oxides exhibited high BET surface areas, narrow pore-size distributions, and enhanced thermal stability. A practical benefit of the mesoporous metal oxides was demonstrated with Au/CeO2 exhibiting high catalytic activity in the water-gas-shift reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.