Abstract
Interventional radiology methods have been adopted for intraoperative control of the surgical region of interest (ROI) in a wide range of minimally invasive procedures. One major obstacle that hinders the success of procedures using interventional radiology methods is the preoperative and intraoperative deformation of the ROI. While fiducial markers (FM) tracing has been shown to be promising in tracking such deformations, determining the optimal placement of the FM in the ROI remains a significant challenge. The current study proposes a computational framework to address this problem by preoperatively optimizing the layout of FM, thereby enabling an accurate tracking of the ROI deformations. The proposed approach includes three main components: (1) creation of virtual deformation benchmarks, (2) method of predicting intraoperative tissue deformation based on FM registration, and (3) FM layout optimization. To account for the large variety of potential ROI deformations, virtual benchmarks are created by applying a multitude of random force fields on the tumor surface in physically based simulations. The ROI deformation prediction is carried out by solving the inverse problem of finding the smoothest force field that leads to the observed FM displacements. Based on this formulation, a simulated annealing approach is employed to optimize the FM layout that produces the best prediction accuracy. The proposed approach is capable of finding an FM layout that outperforms the rationally chosen layouts by 40% in terms of ROI prediction accuracy. For a maximum induced displacement of 20mm on the tumor surface, the average maximum error between the benchmarks and our FM-optimized predictions is about 1.72mm, which falls within the typical resolution of ultrasound imaging. The proposed framework can optimize FM layout to effectively reduce the errors in the intraoperative deformation prediction process, thus bridging the gap between preoperative imaging and intraoperative tissue deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of computer assisted radiology and surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.