Abstract

Using molecular-dynamics (MD) data on a binary-alloy model, we have computed the self (incoherent) -part of the density autocorrelation functions of both species in the supercooled liquid and near the glass transition, over an extensive range of wave numbers. Standard theoretical models of liquid-state theory fail to reproduce the data, while the Chudley-Elliott jump diffusion model yields reasonable results in the glass range. With a suitable scaling of the time axis, the data for different temperatures can be brought onto a single master curve, which is well fitted by a Kohlrausch (``stretched-exponential'') function with a wave-number-dependent exponent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call