Abstract

In this study, the authors address a two‐dimensional (2D) shape registration problem on data with anisotropic‐scale deformation and noise. First, the model is formulated under the iterative closest point (ICP) framework, which is one of the most popular methods for shape registration. To overcome the effect of noise, the expectation maximisation algorithm is used to improve the model. Then, the structure of Lie groups is adopted to parameterise the proposed model, which provides a unified framework to deal with the shape registration problems. Such representation makes it possible to introduce some suitable constraints to the model, which improves the robustness of the algorithm. Thereby, the 2D shape registration problem is turned to an optimisation problem on the matrix Lie group. Furthermore, a sequence of quadratic programming is designed to approximate the solution for the model. Finally, several comparative experiments are carried out to validate that the authors’ algorithm performs well in terms of robustness, especially in the presence of outliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.