Abstract
In this study, we establish an interesting connection between two mathematical approaches to vagueness: rough sets and soft sets. Soft set theory is utilized, for the first time, to generalize Pawlak’s rough set model. Based on the novel granulation structures called soft approximation spaces, soft rough approximations and soft rough sets are introduced. Basic properties of soft rough approximations are presented and supported by some illustrative examples. We also define new types of soft sets such as full soft sets, intersection complete soft sets and partition soft sets. The notion of soft rough equal relations is proposed and related properties are examined. We also show that Pawlak’s rough set model can be viewed as a special case of the soft rough sets, and these two notions will coincide provided that the underlying soft set in the soft approximation space is a partition soft set. Moreover, an example containing a comparative analysis between rough sets and soft rough sets is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.