Abstract
In the iron reverse flotation production process, the amount of flotation agent and the quality of flotation products are usually judged according to the grade of tailings, so it is essential to measure the grade of tailings froth. This research applies computer vision and image feature extraction technology to the soft sensor of tailings froth grade. An adaptive selection method for the image target region is proposed. The relationship between RGB (Red, Green, Blue), HSI (Hue, Saturation, Intensity), and Lab color space and tailings grade of reverse flotation in iron mine has been analyzed. A new image feature is proposed to characterize the degree of froth mineralization. The RGB and HSI dual color space feature values and froth mineralization degree values are determined as input, and the tailing grade soft sensor model is established by the multilayer feedforward perceptrons and VGG-19 neural network. A tailings grade soft sensor system has been developed and applied in a flotation workshop. The results of industrial tests show that this method is efficient and reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.