Abstract
Based on the existing propylene oxidation process, it is important to measure acrolein conversion for the production of acrylic acid. The gas chromatographic analyzer is generally used to analyze the acrolein conversion as an off‐line method. In this paper, a soft sensor modelling method of acrolein conversion based on the hidden Markov model with principle component analysis (PCA) and the fireworks algorithm (FWA) is proposed. Firstly, PCA is used to decrease the input variables of hidden Markov model. Then, FWA is applied to optimize the initial parameters of the hidden Markov model. Finally, the hidden Markov model based on PCA and the FWA is employed to predict the acrolein conversion. The proposed method is compared with the support vector machine (SVM), the artificial neural network (ANN), and the hidden Markov method (HMM) to show its superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.