Abstract

Monitoring cell growth and target production in working fermentors is important for stabilizing high level production. In this study, we developed a novel soft sensor for estimating the concentration of a target product (lysine), substrate (sucrose), and bacterial cell in commercially working fermentors using machine learning combined with available on-line process data. The lysine concentration was accurately estimated in both linear and nonlinear models; however, the nonlinear models were also suitable for estimating the concentrations of sucrose and bacterial cells. Data enhancement by time interpolation improved the model prediction accuracy and eliminated unnecessary fluctuations. Furthermore, the soft sensor developed based on the dataset of the same process parameters in multiple fermentor tanks successfully estimated the fermentation behavior of each tank. Machine learning-based soft sensors may represent a novel monitoring system for digital transformation in the field of biotechnological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.