Abstract

This paper presents a new semi-supervised probabilistic density-based regression approach, called Semi-supervised Weighted Gaussian Regression (SWGR), for the soft sensing of nonlinear and multimode industrial processes given a limited number of labeled data samples. In SWGR, different weights are assigned to each training sample based on their similarities to a query sample. Then a local weighted Gaussian density is built for capturing the joint probability of historical samples around the query sample. The training process of parameters in SWGR incorporates both labeled and unlabeled data samples via a maximum likelihood estimation algorithm. In this way, the soft sensor model is able to approximate the nonlinear mechanics of input and output variables and remedy the insufficiency of labeled samples. At last, the output prediction as well as the uncertainty of prediction can be obtained by the conditional distribution. Two case studies validate that the proposed semi-supervised soft sensing method outperforms some recent methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.