Abstract

Thermal protective textiles are crucial for safeguarding individuals, particularly firefighters and steelworkers, against extreme heat, and for preventing burn injuries. However, traditional firefighting gear suffers from statically fixed thermal insulation properties, potentially resulting in overheating and discomfort in moderate conditions, and insufficient protection in extreme fire events. Herein, an innovative soft robotic textile is developed for dynamically adaptive thermal management, providing superior personal protection and thermal comfort across a spectrum of environmental temperatures. This unique textile features a thermoplastic polyurethane (TPU)-sealed actuation system, embedded with a low boiling point fluid for reversible phase transition, resembling an endoskeleton that triggers an expansion within the textile matrix for enhanced air gap and thermal insulation. The thermal resistance improves automatically from 0.23 to 0.48Km2W-1 by self-actuating under intense heat, exceeding conventional textiles by maintaining over 10°C cooler temperatures. Additionally, the knitted substrate incorporated into the soft actuators can substantially mitigate convective heat transfer, as evidenced by the thermal resistance tests and the temperature mapping derived from numerical simulations. Moreover, it boasts significantly increased moisture permeability. The thermoadaptation and breathability of this durable all-fabric system signify considerable progress in the development of protective clothing with high comfort for dynamic and extreme temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.