Abstract

Due to the digitalization and advanced automation of industrial processes, the interaction of robotic systems with humans is a very important issue. Soft robotics are therefore becoming increasingly important, as soft interfaces could prevent dangerous injuries to people. The current paper presents a concept for a soft robotic system that focusses on an organ-like encapsulation in robotic systems and allows the utilization of rigid parts in the context of soft robotics.The current contribution shows initial investigations about the concept of encapsulated batteries to mimic mitochondria: In biological cells, there are types of organelles that provide the power to the other organs/organelles. In the proposed soft robot, multiple batteries/accumulators are individually encapsulated in poly(N-isopropylacrylamide) (PNiPAAm) hydrogel to perform this task. Due to the thermo-responsivity of the PNiPAAm gel, a swelling or a deswelling of the active encapsulation is obtained by changing the local temperature. In the current work, we apply the Temperature-Expansion-Model to represent this active behavior. Numerical simulations by applying the Finite Element method are performed in order to show the features of the investigated system.The paper presents investigations for the design and simulation of tailored active material encapsulations that can be intrinsically activated from inside the organism. Thus, a robot is obtained that – due to its softness – can be used in interaction with humans. At the same time, it can react to inner stimuli (global decisions from microcontrollers) or outer stimuli (local influences from the environment) to adapt its properties to occurring challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.