Abstract

Using the single-channel resonating group method, in which a central nucleon-nucleon potential containing a soft repulsive core (SRC) is adopted, the (d + d) scattering phase shifts, differential scattering cross sections, and total reaction cross sections at a series of energies <20 MeV with and without imaginary potentials are calculated. The agreement between the theoretical and experimental results is quite good. The main conclusions are: The (d + d) nonlocal kernel function KS (R, R’) deduced is correct; hence, the discrepancy between the kernels in other similar work is clarified. The SRC causes a decrease in the total strength of the (d − d) direct potential VNs(R) and, in particular, the strength of VNs for short range and small channel spin s decreases much more. The SRC causes a decrease in the phase shifts δls(E) (toward the negative direction); the decrease is especially large when E is at or near a resonating energy. The SRC reduces the total reaction cross sections σR appreciably and causes a distinct increase in the differential scattering cross sections dσ/dΩ(θ) at the forward and backward angles; however, it does not greatly influence the differential cross sections at other angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call