Abstract

The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramer-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.