Abstract

The rigid and brittle nature of methylammonium lead iodide (MAPbI3) polycrystalline films limits their application in stretchable devices due to rapid deterioration in performance on cycling. By incorporation of polymer chains in the MAPbI3 films, a strategy to alter the mechanical modulus and the viscoelastic nature of the films has been developed. Combining this with flexible nanochain electrodes, highly stretchable and stable perovskite devices have been fabricated. The resultant polymer-MAPbI3 photodetector exhibits ultralow dark currents (∼10-11 A) and high light switching ratios (∼103) and maintains 75% of performance after 30 days. The viscoelastic nature and lower modulus of the polymer improve the energy dissipation in the polymer-MAPbI3 devices; as a result, they maintain 52% of the device performance after 10000 stretching cycles at 50% strain. The difference in the mechanical behavior is clearly observed in the failure mode of the two films. While rapid catastrophic cracking is observed in MAPbI3 films, the intensity and size of such crack formation are highly limited in polymer-MAPbI3 films, which prevent their failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.