Abstract

Polar coding has been ratified for employment in the 3GPP New Radio standard and several soft-decision decoders achieved comparable performance to that of the state-of-the-art successive cancellation list decoder. Aiming for further improving the performance of the soft-decision polar decoders, we propose a soft-output successive cancellation stack (SSCS) polar decoder, which jointly exploits the benefits of the depth-first search of the stack decoder and the soft information output of the belief propagation decoder. This has the substantial benefit of facilitating soft-input soft-output (SISO) decoding and seamless iterative information exchange in turbo-style receivers. As a further contribution, we intrinsically amalgamate our SSCS decoder into polar-coded large-scale multiple-input multiple-output (MIMO) systems and conceive an iterative turbo receiver, operating on the basis of logarithmic likelihood ratios (LLRs). Our simulation results show that the proposed SSCS decoder is capable of outperforming the state-of-the-art SISO polar decoders, despite requiring a lower complexity at moderate to high signal-to-noise ratios (SNRs). Additionally, compared with the non-iterative hard-output SCS decoder, our SSCS scheme attained 1.5 dB SNR gain at a bit error ratio level of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$10^{-5}$</tex-math></inline-formula> , when decoding the [256,512] polar code of a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(64\times 64)$</tex-math></inline-formula> MIMO system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call