Abstract

Genes associated with plant mechanical stimulation were found in strawberry genome. A soft mechanical stimulation (SMS) induces molecular and biochemical changes in strawberry plants, conferring protection against Botrytis cinerea. Plants have the capacity to induce a defense response after exposure to abiotic stresses acquiring resistance towards pathogens. It was reported that when leaves of Arabidopsis thaliana were wounded or treated with a soft mechanical stimulation (SMS), they could resist much better the attack of the fungal pathogen Botrytis cinerea, and this effect was accompanied by an oxidative burst and the expression of touch-inducible genes (TCH). However, no further work was carried out to better characterize the induced defense response. In this paper, we report that TCH genes were identified for first time in the genomes of the strawberry species Fragaria ananassa (e.g. FaTCH2, FaTCH3, FaTCH4 and FaCML39) and Fragaria vesca (e.g. FvTCH2, FvTCH3, FvTCH4 and FvCML39). Phylogenetic studies revealed that F. ananassa TCH genes exhibited high similarity with the orthologous of F. vesca and lower with A. thaliana ones. We also present evidence that after SMS treatment on strawberry leaves, plants activate a rapid oxidative burst, callose deposition, and the up-regulation of TCH genes as well as plant defense genes such as FaPR1, FaCHI2-2, FaCAT, FaACS1 and FaOGBG-5. The latter represents the first report showing that TCH- and defense-induced genes participate in SMS-induced resistance in plants, bringing a rational explanation why plants exposed to a SMS treatment acquired an enhance resistance toward B. cinerea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.