Abstract

Soft tissue regeneration requires the use of matrices that exhibit adequate mechanical properties as well as the ability to supply nutrients and oxygen, and to remove metabolic bio-products. In this work, we describe the development of hydrogels based on the blend between alginate (Alg) and silk fibroin (SF). Herein, we report two main strategies to combine cells with biomaterials: cells are either seeded onto prefabricated hydrogels films (2D), or encapsulated during hydrogel microcapsules formation (3D). Both geometries were successfully produced and characterized. FTIR results indicated a change of conformation of SF from random coil to β-sheet after hydrogel formation. The thermal degradation behavior of films and microcapsules fabricated from Alg, and Alg/SF was dependent on the hydrogel composition and on the geometry of the samples. The presence of SF caused decreased water uptake ability and affected the degradation behavior. Mechanical tests showed that addition of SF promotes an increase in storage modulus, leading to a stiffer material as compared with pure Alg (6 times higher stiffness). Moreover, the in vitro cell-material interaction on Alg/SF hydrogels of different geometries was investigated using human umbilical vein endothelial cells (HUVECs). Viability, attachment, spreading and proliferation of HUVECs were significantly increased on Alg/SF hydrogels compared to neat Alg. These findings indicate that Alg/SF hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.