Abstract

Aligned and stretched lambda DNA is directed to specific locations on solid substrates. Surface-energy modification of glass substrates by using patterned polydimethylsiloxane (PDMS) stamps is used to direct DNA onto the surface-energy-modified micrometer-scale pattern through molecular combing. As an alternative, patterned and nonpatterned PDMS stamps modified with polymethylmethacrylate (PMMA) are utilized to direct the stretched DNA to the desired location and the results are compared. The DNA is elongated through molecular combing on the stamp and transfer printed onto the surfaces. PMMA-modified stamps show a more defined length of the stretched DNA, as compared to bare PDMS stamps. A combination of these two methods is also demonstrated. As an application example, transfer printing of DNA decorated with a semiconducting conjugated polyelectrolyte is shown. The resulting patterned localization of stretched DNA can be utilized for functional nanodevice structures, as well as for biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call