Abstract
Filter pruning (FP) is an effective method for reducing the computational costs of convolutional neural networks, and herein, the most critical task involves evaluating the significance of each convolutional filter and eliminating the less important ones while minimizing performance degradation. Most existing FP methods consider only local information, which may prevent them from accurately recognizing the most important filters. To address this limitation, we propose the soft filter independence (SFI) method, which leverages global information to identify the most important filters using their magnitude and correlation information in different functional layers. The SFI criterion measures the replaceability of filters from a global perspective in a network. Filters with low independence can be represented effectively by others, so their information can be accurately conveyed by other filters. In addition, we introduce a novel SFI-based asymptotic pruning ratio, which improves training and pruning stability. Compared to the most advanced FP methods, our method enables CNNs to achieve higher pruning rates and better classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.