Abstract

Poly(ethylene glycol) (PEG)-based soft elastomers, bearing tertiary amine and hydroxyl groups, were synthesized in bulk from the epoxy–amine reaction between poly(ethylene glycol) diglycidyl ether (PEGDE) and a poly(etherdiamine), Jeffamine ED600. High gel fractions (≥0.95) and low glass transition temperatures (Tg ≈ −50 °C) were attained after complete curing of the systems in bulk. The amphiphilicity of the network allowed the swelling of the materials in both aqueous solutions and a variety of organic solvents. Magnetic nanocomposites were synthesized by in situ coprecipitation of magnetic nanoparticles (MNPs) in the elastomeric matrix. The obtained materials were processed by cryogenic milling to obtain powders that were tested as potential magnetic adsorbents and that showed a fast and strong response to the action of a permanent magnet. These materials showed removal rates of at least 50% in 10 min when used in the adsorption of Cu+2 ions from an aqueous solution, making them interesting candidates for the design of magnetically separable metal ion adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call