Abstract

Fish has primarily served as a model for many bio-inspired underwater robots. However, most of the work on fish-inspired robots is focused on propulsion and turning in the horizontal plane. In this paper, we present our work on the 3D motion of bio-inspired underwater robots. A pair of actuated soft fins, mimicking the soft dorsal and anal fins of a live fish, have been designed and tested to generate lateral thrusts that aim to produce both roll and yaw motions. Furthermore, they can be used to provide vertical stabilization of the forward motion in the robot. These fins comprise shape memory alloy wires embedded in silicone. We demonstrate that these fins can provide a means for 3D maneuvering. In this work, we focus on roll and yaw motions. A key feature of the proposed design is that it is lightweight, compact, and waterproof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.