Abstract

This paper addresses the issue of robust and joint source-channel decoding of arithmetic codes. We first analyze dependencies between the variables involved in arithmetic coding by means of the Bayesian formalism. This provides a suitable framework for designing a soft decoding algorithm that provides high error-resilience. It also provides a natural setting for "soft synchronization", i.e., to introduce anchors favoring the likelihood of "synchronized" paths. In order to maintain the complexity of the estimation within a realistic range, a simple, yet efficient, pruning method is described. The algorithm can be placed in an iterative source-channel decoding structure, in the spirit of serial turbo codes. Models and algorithms are then applied to context-based arithmetic coding widely used in practical systems (e.g., JPEG-2000). Experimentation results with both theoretical sources and with real images coded with JPEG-2000 reveal very good error resilience performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.