Abstract
In this work, the design of a q-bit (scalar and vector) soft-decision demodulator for Gaussian channels with binary phase-shift keying modulation is investigated. The demodulator is used in conjunction with a soft-decision channel-optimized vector quantization (COVQ) system. The COVQ is constructed for an expanded (q>1) discrete channel consisting of the concatenation of the modulator, the Gaussian channel, and the demodulator. It is found that as the demodulator resolution q increases, the capacity of the expanded channel increases, resulting in an improvement of the COVQ performance. Consequently, the soft-decision demodulator is designed to maximize the capacity of the expanded channel. Three Gaussian channel models are considered as follows: (1) additive white Gaussian noise channels; (2) additive colored Gaussian noise channels; and (3) Gaussian channels with intersymbol interference. Comparisons are made with (a) hard-decision COVQ systems, (b) COVQ systems which utilize interleaving, and (c) an unquantized (q=/spl infin/) soft-decision decoder proposed by Skoglund and Hedelin (1999). It is shown that substantial improvements can be achieved over COVQ systems which utilize hard decision demodulation and/or channel interleaving. The performance of the proposed COVQ system is comparable with the system by Skoglund and Hedelin-though its computational complexity is substantially less.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.