Abstract

In this contribution we present an exhaustive treatment of various coding and decoding techniques for use in fast frequency-hopping/multiple frequency shift keying multiple-access systems. One of the main goals is to show how reliability information on each received bit can be derived to enable soft-decision decoding. Convolutional codes as well as turbo codes are considered applying soft-decision, erasure, and hard-decision decoding. Their performance is compared to that of previously proposed Reed-Solomon with either errors-only or errors-and-erasures decoding. A mobile radio environment yielding a frequency-selective fading channel is assumed. It is shown that the application of turbo codes and convolutional codes with soft decision decoding can allow for a comparable number of simultaneously transmitting users to Reed-Solomon codes with errors-and-erasures decoding. Furthermore, the advantage of soft decisions is shown, which can be applied to a widely and growing range of channel codes. The pertinent technique of calculating soft decisions is described in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.