Abstract

The self-assembly of diblock copolymers under soft confinement is studied systematically using a simulated annealing method applied to a lattice model of polymers. The soft confinement is realized by the formation of polymer droplets in a poor solvent environment. Multiple sequences of soft confinement-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of solvent-polymer interaction and the monomer concentration. It is discovered that the self-assembled internal morphology of the aggregates is largely controlled by a competition between the bulk morphology of the copolymer and the solvent-polymer interaction, and the shape of the aggregates can be non-spherical when the internal morphology is anisotropic and the solvent-polymer interaction is weak. These results demonstrate that droplets of diblock copolymers formed in poor solvents can be used as a model system to study the self-assembly of copolymers under soft confinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.