Abstract
In this study, soft computing and multilinear regression techniques were employed to develop models for prediction of progression of chip seal percent embedment depth ( Pe). The model uses inputs such as cumulative equivalent traffic volume, Vialit test results, dust content of aggregates, and initial embedment depth. Multilinear regression, adaptive neuro-fuzzy system, and artificial neural network techniques were used to estimate the Pe. The contribution of the variables affecting Pe was evaluated through a sensitivity analysis. The results indicate that while most of the proposed models were able to predict the Pe reasonably, the artificial neural network model performed the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.