Abstract

Accurate simulation of rainfall-runoff process is of great importance in hydrology and water resources management. Rainfall–runoff modeling is a non-linear process and highly affected by the inputs to the simulation model. In this study, three kinds of soft computing methods, namely artificial neural networks (ANNs), model tree (MT) and multivariate adaptive regression splines (MARS), have been employed and compared for rainfall-runoff process simulation. Moreover, this study investigates the effect of input size, including number of input variables and number of data time series on runoff simulation by the developed models. Inputs to the simulation models for calibration and validation purposes consist two parts: I1: five variables, including daily rainfall and runoff time series (30 years) with lag times, and I2: twelve variables, including daily rainfall and runoff time series (10 years). To increase the model performances, optimal number and type for input variables are identified. The efficiency of the training and testing performances using the ANNs, MT and MARS models is then evaluated using several evaluation criteria. To implement the methodology, Tajan catchment in the northern part of Iran is selected. Based on the results, it was found that using I1 as input to the developed models results in higher simulation performance. The results also provided evidence that MT (R = 0.897, RMSE = 6.70, RSE = 0.33) with set I2 is capable of reliable model for rainfall-runoff process compared with MARS (R = 0.892, RMSE = 7.47, RSE = 0.83) and ANNs (R = 0.884, RMSE = 7.40, RSE = 0.43) models. Therefore, size (length of data time series) and type of input variables have significant effects on the modeling results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.