Abstract
Ultrasound imaging is the most suitable method for early detection of prostate cancer. It is very difficult to distinguish benign and malignant nature of the affliction in the early stage of cancer. This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A computer based classification system can provide a second opinion to the radiologists. Generally, objects are described in terms of a set of measurable features in pattern recognition. The selection and quality of the features representing each pattern will have a considerable bearing on the success of subsequent pattern classification. Feature selection is a process of selecting the most wanted or dominating features set from the original features set in order to reduce the cost of data visualization and increasing classification efficiency and accuracy. The region of interest (ROI) is identified from transrectal ultrasound (TRUS) images using DBSCAN clustering with morphological operators after image enhancement using M3-filter. Then the 22 grey level co-occurrence matrix features are extracted from the ROIs. Soft computing model based feature selection algorithms genetic algorithm (GA), ant colony optimization (ACO) and QR are studied. In this paper, QR-ACO (hybridization of rough set based QR and ACO) and GA-ACO (hybridization GA and ACO) are proposed for reducing feature set in order to increase the accuracy and efficiency of the classification with regard to prostate cancer. The selected features may have the best discriminatory power for classifying prostate cancer based on TRUS images. Support vector machine is tailored for evaluation of the proposed feature selection methods through classification. Then, the comparative analysis is performed among these methods. Experimental results show that the proposed method QR-ACO produces significant results. Number of features selected using QR-ACO algorithm is minimal, is successful and has high detection accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.