Abstract

ABSTRACT Precise estimation of solar radiation is a highly required parameter for the design and assessment of solar energy applications. Over the past years, many machine learning techniques have been proposed in order to improve the forecasting performance using different input attributes. The aim of this study is the forecasting of one day ahead of horizontal global solar radiation using a set of meteorological and geographical inputs. In this respect, the Gaussian process regression methodology (GPR) and least-square support vector machine (LS-SVM) with different kernels are evaluated in order to select the most appropriate forecasting model. In order to assess the proposed models, the southern Algerian city, Ghardaia regions, was selected for this study. A historical data of five years (2013–2017) of meteorological data collected at Renewable Energies (URAER) in Ghardaia city are used. The achieved results demonstrate that all the proposed models give approximately similar results in terms of statistical indicators. In term of processing time, all the models showed acceptable computational efficiency with less computational costs of the GPR model among all machine learning models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.