Abstract

Recent approaches to fault detection and isolation for dynamic systems using methods of integrating quantitative and qualitative model information, based upon soft computing (SC) methods are surveyed and studied in some detail. SC methods are considered an important extension to the quantitative model-based approach for residual generation in fault detection and isolation (FDI). When quantitative models are not readily available, a correctly trained neural network (NN) can be used as a non-linear dynamic model of the system. The paper describes some powerful NN methods, taking into account the dynamic as well as non-linear system behaviour. Sometimes, further insight is required as to the explicit behaviour of the model-involved and it is then that fuzzy and even neurofuzzy methods come to their own in data-driven FDI applications. The paper also discusses the use of evolutionary programming tools for observer and NN design. The paper provides many powerful examples of the use of SC methods for achieving good detection and isolation of faults in the presence of uncertain plant behaviour, together with their practical value for fault diagnosis of real process systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.