Abstract

Assemblies of inorganic or glassy particles are typically brittle and cannot sustain even moderate deformations. This restricts the use of such materials to applications where they do not experience significant loading or deformation. Here, we demonstrate a general strategy to create centimeter-size macroporous monoliths, composed primarily (>90 wt %) of colloidal particles, that recover elastically after compression to about one-tenth their original size. We employ ice templating of an aqueous dispersion of particles, polymer, and cross-linker such that cross-linking happens in the frozen state. This method yields elastic composite scaffolds for starting materials ranging from nanoparticles to micron-sized dispersions of inorganics or glassy lattices. The mechanical response of the monoliths is also qualitatively independent of polymer type, molecular weight, and even cross-linking chemistry. Our results suggest that the monolith mechanical properties arise from the formation of a unique hybrid microstru...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.