Abstract

Soft pressure sensors have a wide range of applications, such as aerodynamic control of cars and unmanned aerial vehicles, navigation of underwater vehicles, and wearable electronics. Existing soft pressure sensors are typically based on capacitive or resistive principles. However, these sensors, made of multiple layers of different materials, tend to delaminate under negative pressures and thus cause sensor failure. In this work, we present the fabrication method for soft capacitive pressure sensors that can reliably detect both positive and negative pressures. The pressure sensor is comprised of one layer of Ecoflex-0030 substrate with cavity channels embedded inside, and two layers of polydimethylsiloxane (PDMS), with two layers of patterned PEDOT:PSS films serving as the electrodes of the sensor. The PEDOT:PSS films are screen printed orthogonally on both sides of the Ecoflex-0030 substrate, and each side is encapsulated by another PDMS layer, which is much stiffer than the Ecoflex-0030 substrate. More importantly, the cavity channels in the Ecoflex-0030 substrate greatly enhance the substrate deformation, hence the capacitive sensor would exhibit remarkable relative change in capacitance when a pressure is applied. Secondly, the encapsulation of PDMS on the Ecoflex substrate protects the electrodes and effectively avoids the delamination problem under negative pressure. In particular, we report the detailed characterization of sensitivity and repeatability of the fabricated pressure sensor for positive and negative pressures of up to 50 kPa. Furthermore, a 12×12 pressure sensor array is fabricated to demonstrate the capability of mapping pressure distributions created by both compressive loads and vacuum suction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.