Abstract
Gradient coding is a coding theoretic framework to provide robustness against slow or unresponsive machines, known as stragglers, in distributed machine learning applications. Recently, Kadhe et al. (2019) proposed a gradient code based on a combinatorial design, called balanced incomplete block design (BIBD), which is shown to outperform many existing gradient codes in worst-case adversarial straggling scenarios. However, parameters for which such BIBD constructions exist are very limited (Colbourn and Dinitz, 2006). In this paper, we aim to overcome such limitations and construct gradient codes which exist for a wide range of system parameters while retaining the superior performance of BIBD gradient codes. Two such constructions are proposed, one based on a probabilistic construction that relax the stringent BIBD gradient code constraints, and the other based on taking the Kronecker product of existing gradient codes. The proposed gradient codes allow flexible choices of system parameters while retaining comparable error performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal on Selected Areas in Information Theory
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.