Abstract

Liquid-vapor phase change materials (PCMs), capable of significant volume change, are emerging as attractive actuating components in forming advanced soft composites for robotic applications. However, the novel and functional design of these PCM composites is significantly limited due to the lacking of the fundamental understanding of the mechanical properties, which further inhibits the broad applications of PCM based materials in the engineering structures requiring large deformation and high loading capacity. In this study we fabricate PCM-elastomer composites exhibiting large deformation and high output stress. Thermomechanical properties of these composites are experimentally and theoretically investigated, demonstrating enhanced deformation and loading capacity due to the induced vapor pressure. By controlling the distribution and content of the PCM inclusions, structures with tunable deformability under a relatively small strain in comparison with traditional soft materials are fabricated. Accompanying with the asymmetrical friction and deformation, complex locomotion and adaptable grabbing function are achieved with excellent performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.