Abstract

Soft robotic systems are human friendly and can mimic the complex motions of animals, which introduces promising potential in various applications, ranging from novel actuation and wearable electronics to bioinspired robots operating in unstructured environments. Due to the use of soft materials, the traditional fabrication and manufacturing methods for rigid materials are unavailable for soft robots. 3D printing is a promising fabrication method for the multifunctional and multimaterial demands of soft robots, as it enables the personalization and customization of the materials and structures. This review provides perspectives on the manufacturing methods for various types of soft robotic systems and discusses the challenges and prospects of future research, including in-depth discussion of pneumatic, electrically activated, magnetically driven, and 4D-printed soft actuators and integrated soft actuators and sensors. Finally, the challenges of realizing multimaterial, multiscale, and multifunctional 3D-printed soft robots are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.