Abstract

Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.