Abstract

Abstract In 2019 October Betelgeuse began a decline in V-band brightness that went beyond the minimum expected from its quasi-periodic ∼420 day cycle, becoming the faintest in recorded photometric history. Observations obtained in 2019 December with Very Large Telescope/SPHERE have shown that the southern half of the star has become markedly fainter than in 2019 January, indicating that a major change has occurred in, or near, the photosphere. We present Stratospheric Observatory for Infrared Astronomy (SOFIA) Echelon Cross Echelle Spectrograph (EXES) high spectral-resolution observations of [Fe ii] and [S i] emission lines from Betelgeuse obtained during the unprecedented 2020 February V-band brightness minimum to investigate potential changes in the circumstellar flow. These spectra are compared to observations obtained in 2015 and 2017 when the V magnitude was typical of brighter phases. We find only very small changes in the gas velocities reflected by either of the line profiles, no significant changes in the flux to continuum ratios, and hence no significant changes in the [Fe ii]/[S i] flux ratios. There is evidence that absorption features have appeared in the 2020 continuum. The Alfvén wave-crossing time from the upper photosphere is sufficiently long that one would not expect a change in the large-scale magnetic field to reach the circumstellar [Fe ii] and [S i] line-forming regions, 3 < R (R *) < 20. However, the light-crossing time is of order a few hours and a reduction in luminosity may reduce the dust-gas heating rate and [O i] emission, which has contributions from R > 20R *, where significant circumstellar oxygen-rich dust is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call