Abstract

We present photometric observations from the {\it Stratospheric Observatory for Infrared Astronomy (SOFIA)} at 11.1 $\mu$m of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by {\it SOFIA}, but the upper limits obtained, combined with new and archival detections from {\it Spitzer} at 3.6 \& 4.5 $\mu$m allow us to characterize the composition of the dust present. Dust in other Type IIn SNe has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 $\mu$m feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01-0.05 $\msun$ of carbonaceous dust radiating at a temperature of $\sim 550-620$ K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call