Abstract

Among the distributed generation emerging technologies, solid oxide fuel cells (SOFCs) seem to be the most promising for small and medium power (up to 1 MW) as they feature extremely high efficiency and low pollutant emissions, and the high-grade waste heat can be utilized for space heating, process steam, and/or domestic hot water demands. As their main drawbacks are high cost and relatively short lifetime, much research is devoted to solve technological problems and to develop less expensive materials and mass production processes. However, even if SOFCs are close to commercialization and several demonstration units are already running, only few researches have been performed on their integration in power plants for distributed power generation, which are complex systems made up of different components that have to satisfy energy requirements (heat, electricity, and cooling). In this paper, we investigate the behavior of SOFCs in distributed energy systems and how their operation in terms of load and fuel utilization factor could optimize fuel consumption and/or minimize energy costs. The potential advantages of SOFCs related to their excellent part-load operation and their ability to meet and follow the highly noncoincident electric and thermal loads in either grid-connected or stand-alone configurations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.