Abstract

Nuclear magnetic resonance (NMR)-based metabolomics relies mostly on 1D NMR; however, the technique is limited by overlap of the signals from the metabolites. In order to circumvent this problem, 2D 1H-13C correlation spectroscopy techniques are often used. However owing to poorer natural abundance and gyromagnetic ratio of 13C, the acquisition time for 2D 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) is long. This makes it almost impossible to be used in high throughput study. We have reported the application of selective optimized flip angle short transient (SOFAST) technique coupled to heteronuclear multiple quantum correlation (HMQC) along with nonlinear sampling (NUS) in urine and serum samples. This technique takes sevenfold less experimental time than the conventional 1H-13C HSQC experiment with retention of almost all molecular information. Hence, this can be used for high throughput study. Graphical abstract SOFAST-HMQC is a two-dimensional NMR technique that significantly decreases experimental time without loss of information. This technique is applied in complex biofluid samples that are used for high throughput metabolomics studies and shows promise of better information recovery than conventional two-dimensional NMR technique in shorter time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.