Abstract

Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca2+ levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca2+ signals evoked by PbTx-3 were inhibited by blocking either IP3 receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP3 mass levels, dependent on extra-cellular Na+. A similar increase in IP3 mass was induced by high K+ depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP3 mass induced by either PbTx-3 or K+ was also detected in Ca2+-free medium. These results establish that the effect of the toxin on both intracellular Ca2+ and IP3 levels occurs via a membrane potential sensor instead of directly by Na+ flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP3-dependent calcium signal involved in regulation of gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.